A look into current driver behavior research

CHRIS SCHWARZ, TIMOTHY BROWN, & JOHN GASPAR NATIONAL ADVANCED DRIVING SIMULATOR (NADS)

The University of Iowa

MAY, 2016

Our Motivation

90% of motor vehicle crashes are attributed to human error

In 2013...

- 32,719 traffic fatalities including 4,668 involving motorcyclists and 4,735 pedestrians
- 2.3 million people injured
- **31% of all traffic-related deaths involved alcohol** From 2004 to 2013, of all the states, Iowa had the largest increase in alcohol impaired driving fatalities at 45 percent
- Drowsy drivers are involved in an estimated 21% of fatal crashes
- 22% of drivers tested positive for illegal, prescription, or over-the-counter drugs
- 16% of all police-reported motor vehicle traffic crashes involved distraction
- Motor vehicle crashes are the leading cause of death for ages 5 through 24, 2nd leading cause of death for 25+

The economic cost to society exceeds \$230 billion

-NHTSA, Traffic Safety Facts, 2013 Data AAA Foundation, Prevalence of Motor Vehicle Crashes Involving Drowsy Drivers, US, 2009-2013 CDC Data, 2013

Some of our research areas

- Driver impairment
 - Distraction
 - Alcohol and drugs
 - Drowsiness
 - Driver state detection and mitigation
- Vehicle technology
 - Connected vehicles
 - Automated vehicles

Driver distraction

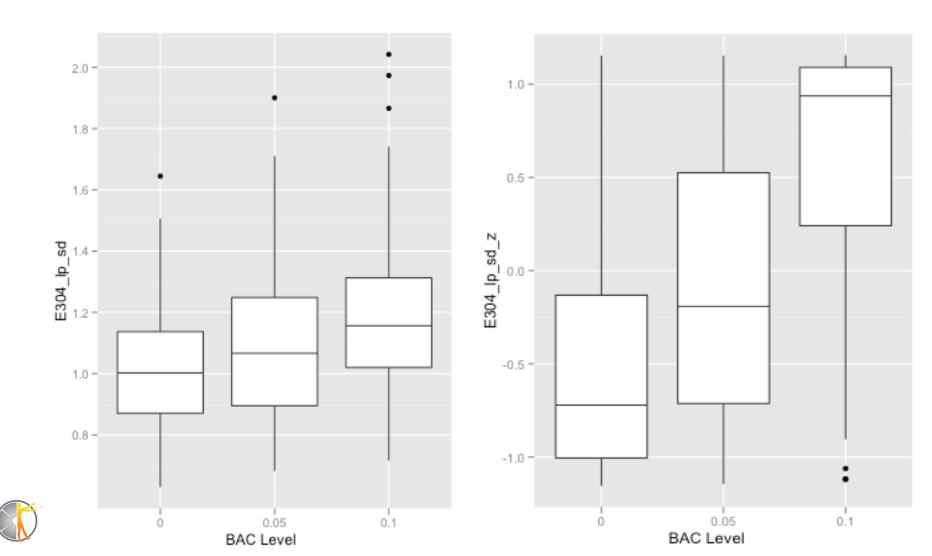
Studying how distraction contributes to crashes

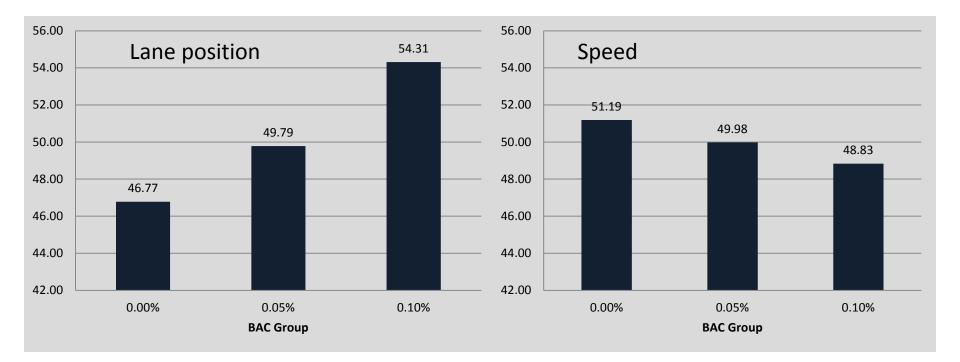
Forward collision warnings can help, particularly for distracted drivers

Seat belt tug (fast RT) No crash

S58

Alcohol


- IMPACT impaired driving scenario
- Multi-faceted driving scenario
 - Urban environment
 - Interstate driving
 - Rural two-lane environment
- Validated in detecting impairment via:
 - Alcohol (0.05 and 0.10 BrAC)
 - Cannabis
 - alprazolam
 - diphenhydramine
 - amphetamine salts
 - triazolam
 - caffeine


 Goal: To create a standardized driving scenario that is able to detect impairment by multiple drugs

Alcohol Signatures

Lane Keeping and Speed

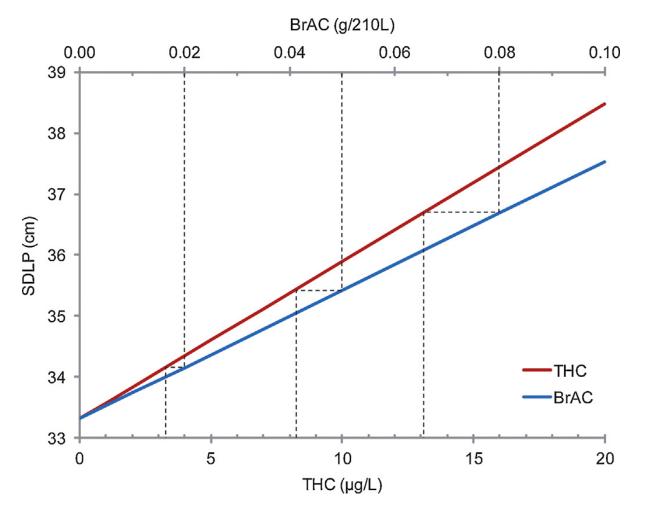
Cannabis

NHTSA/NIDA/ONDCP

- Objective: Characterization of cannabis effects on driving performance with and without alcohol
- NADS-1 randomized placebo controlled crossover
- Within subjects design

Jational Advanced Driving Simulator

NIDA/Advanced Brain Monitoring


- Objective: Gather data for drug impairment algorithm based on EEG and driving performance
- miniSim randomized placebo controlled crossover study
- Results: time from dosing essential to impairment detection

B-Alert X10

Cannabis

Prescription drugs

NIDA/ABM 1

- Baseline controlled
- Recommended adult doses of caffeine (No-Doz) and diphenhydramine (Benadryl)
- First look at EEG collected during drugged driving
- 50mg diphenhydramine very similar driving pattern to 0.10 BrAC

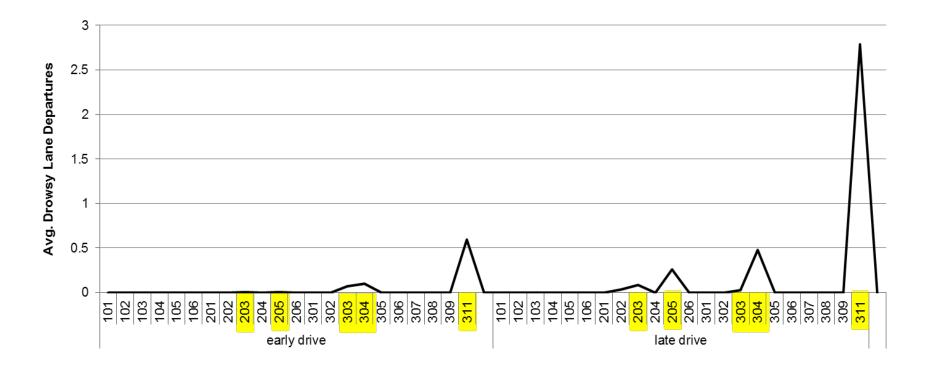
NIDA/ABM 2

- Placebo controlled
- Recommended adult doses of alprazolam (Xanax), and mixed amphetamine salts (Adderall)
- A look at more potent CNS depressant/stimulant
- Frequently abused prescription drugs

21% of All Fatal Crashes Involve a Drowsy Driver

- Participant awake for 21 hours
- 4:15am drive time
- 35 minutes into the drive
- About to experience microsleep
- Algorithm can predict drowsiness to warn before lane departures

https://www.aaafoundation.org/sites/default/files/AAAFoundation-DrowsyDriving-Nov2014.pdf


Crashes occur when drowsy drivers depart lane during microsleep

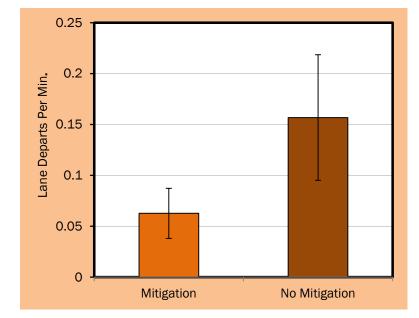
Increase in drowsy lane departures with sleep deprivation and drive time

Driver State Detection

- Part of multi-year driver impairment detection program
 - Alcohol
 - Distraction
 - Drowsiness
- Goal
 - Detect driver state in real-time
 - Distinguish impairment from drowsiness vs. alcohol
- Method
 - Collect data from subjects across age groups and genders
 - Collect data: baseline, buzzed, drunk, semi-drowsy, drowsy, distracted a little, distracted a lot
 - Mine data to develop and train algorithms that identify and predict driver state

Mitigation provides warnings to distracted driver

Demonstration of Driver Feedback



Testing the effectiveness of drowsiness countermeasures

 Effective countermeasures will vary by type of impairment

How do we get drowsy drivers to stop to rest?

Connected vehicles (V2V)

- Ability for vehicles to communicate with one another and infrastructure
- Ability to notify drivers before threats are visible

NHTSA Heavy Truck V2V Study

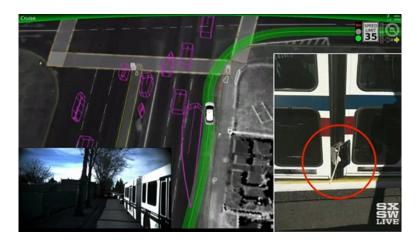
Connected vehicle instrumented vehicle study

Automated vehicles

THE UNIVERSITY

Automated vehicles

- Several unanswered questions
 - Automation failures
 - Transfers of control
 - State detection
 - Driver training
 - Driver acceptance



Ongoing automation research

- How willing are drivers to accept automated vehicles driving around them?
- How comfortable do drivers feel with automation?
 - Does this change after an automation failure or with experience?

