Stan Caldwell, Executive Director

A U.S. DOT UNIVERSITY TRANSPORTATION CENTER

Carnegie Mellon University

University of Pennsylvania

Mobility 21

Connected and Autonomous Vehicles

Connectivity

 Includes all types of communication with vehicles and infrastructure (Wi-Fi, DSRC, Cellular, etc.)

Connected Vehicle

Connected and Autonomous Vehicles

Connectivity

 Includes all types of communication with vehicles and infrastructure (Wi-Fi, DSRC, Cellular, etc.)

Autonomous Vehicle

Operates in isolation from other vehicles using internal sensors

Connected Vehicle

Communicates with nearby vehicles and infrastructure

Connected and Autonomous Vehicles

Connectivity

 Includes all types of communication with vehicles and infrastructure (Wi-Fi, DSRC, Cellular, etc.)

Autonomous Vehicle

Operates in isolation from other vehicles using internal sensors

Connected Vehicle

Communicates with nearby vehicles and infrastructure

Carnegie Mellon University 30 Years of Self-Driving Car Research

Happy Birthday!

1984

- The Terregator's top speed was a few centimeters per second; it could avoid obstacles.
- NavLab launched. Its goal: apply computer vision, sensors and high-speed processors to create vehicles that drive themselves.

1986

Humans or computers controlled NavLab1, a Chevy van. Top speed: 20 mph.

1990

NavLab 2, a US Army HMMWV, wrangled rough terrain at 6 mph. Highway speed: 70 mph.

1995

NavLab 5, a Pontiac Trans Sport, traveled from Pittsburgh to San Diego in the "No Hands Across America Tour."

2000

NavLab 11, a Jeep, was equipped with Virtual Valet.

2005

Sandstorm and Highlander placed 2nd and 3rd in the DARPA Grand Challenge.

2007

Carnegie Mellon's "Boss" won the DARPA Grand Urban Challenge by outmaneuvering other vehicles along the 55-mile course.

2014

Carnegie Mellon's 14th self-driving vehicle is a Cadillac SRX that:

- avoids pedestrians and cyclists
- takes ramps and merges
- recognizes and obeys traffic lights
- looks like other Cadillac SRXs

www.engineering.cmu.edu

Autonomous Vehicle Sensing

Autonomous Vehicles

2007 GM Lab

2012 GM Lab

Carnegie Mellon

Trunk Space

Pittsburgh Demonstration

9-4-14

33 miles along Route 19 in multi-lane, dense traffic with lights and two interstate highways

Challenges

- Exogenous: The complexity & uncertainty of the real world
 - Weather, lighting, and road conditions; construction; accidents; obsolete information, loss of GPS.
- Endogenous: Online and safe recovery from failures of sensors, actuators, computing or communications.
 - Sensors and actuators
 - Calibration, wear and tear, outright failure.
- Assurance: How to verify and validate safety & correctness?
- Interactions: Vehicular Networks
 - communicate securely and coordinate carefully
- Reliability
 - cost and maintenance, customer acceptance
- Incremental deployment
 - Semi-autonomy → on-demand autonomy → full autonomy
- Legal implications

There Are Six Levels of Vehicle Automation

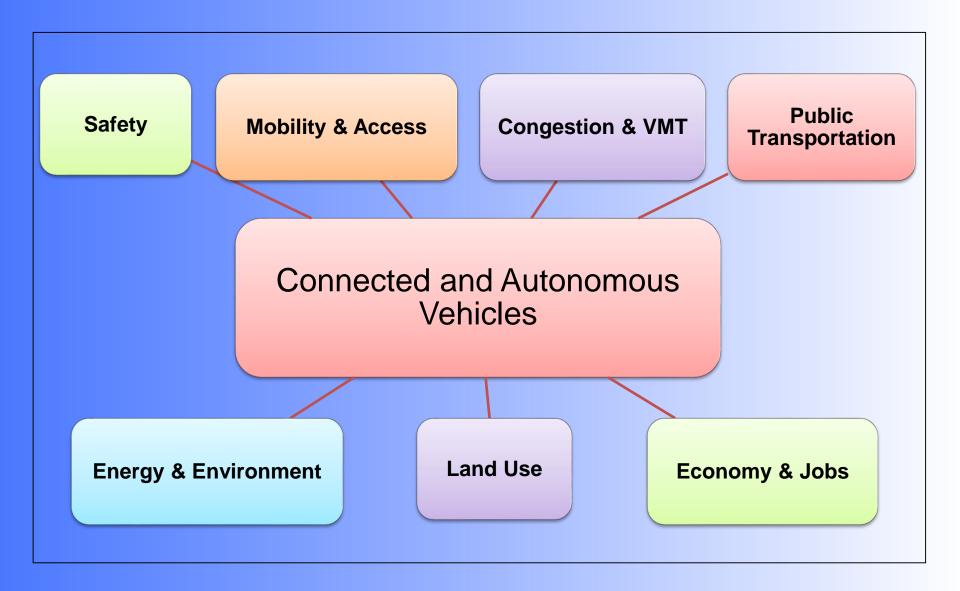
Level	Name	Who is Driving?	Who is Monitoring?	Who Intervenes?
0	No Automation			
1	Driver Assist			
2	Partial Automation			
3	Conditional Automation			
4	High Automation			
5	Full Automation			

Source: Adapted from NHTSA and SAE J3016

The Integration of the Shared Economy with Connected Automaton

- Last Mile
- On Demand Transit
- Modal Shift
- Carless and Car-free Lifestyle

Uber Cars: September 15, 2016 Post Gazette Photo



Early Deployment of Connected Automation

- Real-World Testing from New Mobiltiy Companies
 - Uber, Tesla, Waymo, Navya, Peloton, etc.
- Integration of Connected Automation in Traditional Automotive Companies
 - GM, Ford, Delphi,
- Investments of Traditional Automotive Companies into New Mobility Companies
 - GM/Lyft and Ford/Argo Al
- Smart Belt Coalition
 - Pennsylvania, Ohio and Michigan
 - Connected Work Zones and Platooning

Policy Implications

